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1. The differential equations of Dirac' for an electron have been general-
ized by Weyl2 and Fock3 to the case of general relativity and further
studied by Schouten4 and others. The theory which results makes use of
ideas which seem likely to be of considerable significance in differential
geometry in general. It is the purpose of this note to set forth some of the
requisite geometrical ideas in the simplest case, the case which can be
handled by direct generalization of the spinors defined by van der
Waerden.5 The note is thus a sort of geometric commentary on the paper
of Weyl.
At each point of an underlying manifold with a coordinate system (xl,

.x.. X4) there is a tangent space with coordinates (dxl, . . ., dX4). A differ-
ential form g,,dx'dx', gives a Euclidean measure of distance, angle, etc.,
in each tangent space. The Riemannian geometry is the simultaneous
theory of all these Euclidean spaces.
The locus

gjdtedx'i = 0 (1.1)

is a quadratic cone through the origin. Let us confine ourselves to the
relativity case, in which (1.1) is the light-cone and is of signature (-, -,
-, +). This means that there is a transformation of coordinates, dx >0
X, in the tangent spaces which carries the cone (1.1) into

-(Xl)2- (X2)2- (X3)2 + (X4)2 = 0. (1.2)
Let us write the equations of this transformation in the form,

Xa = gidx'. (1.3)

We adopt the convention that the letters a, ..., h used as indices refer
to the coordinate system X in the tangent space, and i, . . ., z used as
indices refer to the coordinates of the underlying space or of the differ-
entials dxl, ..., dx4. We shall also use as far as conveniently possible,
the convention of Schouten that a geometrical object shall be indicated
in all coordinate systems by the same carrier letter, different sorts of
coordinate systems being indicated by different alphabets or portions of
alphabets used as indices. Thus the quadratic form in (1.2) is

gab-z -X.
Also we have

gabgs 9g =gija
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where -1 0 0 0

(gab) 0 1 0 0 (1.4)O 0-1 0
O O 0 1.

We make the definition
gia =gai =gg1 (1.5)

and
ga = gabg , (1.6)

where, as usual
-ik
g gik = bj.

It then follows that

g.=gtgi=X and gagi = ga = (1.7)

Having the existence of the quantities ge in one coordinate system x
we are free to assume a transformation law for them. We assume that
g,, g2, g3. g4 are four covariant vectors. It then follows that the com-
ponents of these vectors in any other coordinate system will transform
the equation (1.1) in the new co6rdinate system into (1.2). If we assume
also that g', g,gI, gl are four contravariant vectors, then (1.5), (1.6) and
(1.7) hold in all coordinate systems.
From the fact that gl, g,2 g?, g4 are covariant vectors, it follows that

XI, X2, X3, X4 are unaltered by any transformation of co6rdinates x in
the underlying space. We therefore call them scalar co6rdinates for the
tangent Euclidean space. They can be subjected to an arbitrary Lorentz
transformation

X =LbX(1.8)

without altering anything that has been said, provided that we replace
(1.3) by

* x~~~~~)a = gad
where

e = Lb

With respect to transformations of coordinates in the underlying space
the quantities Lb are 16 scalars.
The quantities gai gs, gap etc., are components of the metric tensor with

respect to a in the scalar coordinate system X, and with respect to i in
the coordinate system dx.

2. The cone (1.1) is a system of straight lines through its vertex. The
structure of this system of lines may be made evident as follows. Con-
sider any 3-space S3 in the tangent 4-space but not passing through the
origin (point of contact). Each line of the cone cuts S3 in one and but
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one point and the set of all these points constitutes a quadric surface in
S3. Hence the relationships among themselves of the lines of the cone are
the same as those among the points of an ordinary quadric in a 3-space.
The property of a quadric which we wish to use is that it contains two

one-parameter systems of straight lines, the generators of the quadric.
Any line of one system cuts all the lines of the other system, and no two
lines of the same system intersect. If X is a parameter which designates
a line of the first system and 4 a parameter which designates a line of the
second system then the pair of numbers (X, ,u) designates a unique point
on the quadric. Inversely any point of the quadric determines a pair
of parameter values (X, IA) since there is one line of each system through
such a point.
Going back to the cone (1.1), each point of the quadric is the trace in

S3 of a line of the cone and each line on the quadric is the trace of a plane
on the cone. Hence there are two systems of planes on the cone such
that two planes of the same system have no point in common except the
vertex and such that each plane of one system intersects each plane of the
other system in a line. The planes of one system can be designated by
the values X and those of the other system by ,u and the pair of values
(X, ,u) will determine a line of the cone.
In the case which we are studying, when the equation of the cone is

reducible to (1.2), the quadric in S3 is real but the straight lines on it are
imaginary. The quadric is projectively equivalent to an ordinary sphere.
Thus the structure of the system of light lines through the vertex of (1.1)
is like that of the points on a sphere.
The properties which we have been inferring from theorems of geom-

etry can also be obtained by an elementary algebraic argument. Sup-
pose we set

XI + *X2
X4

X3 + X4 X13
XA+/2 ____

X1-iX2 X3-X4 (2.1)
= X=_24

V/2
Then

2X13 X14 -(Xl)2 - (X2)2 - (X3)2 + (X4)2. (2.2)
X23 X24

If this determinant is to vanish there must exist variables 4,1, 4/2A, , i/ 4,
such that

X13 = I61413 X14 = \61644
(2.3)

X23 = ),24,3 X24 = 4,24,4.
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Solving the equations (2.1) we obtain

X14 + X23 _,1t,4 + 4243

X14 - X23 /1V/4l 243
=/V-2 V/-2

(2.4)
X13- X24 J,113 -/24

X3 N/2- v 2

X4-X23 + X24 _ ,1t,l3 +. V/t2V/4
/02 N/2-

as a parameter representation of the points on the cone (1.1).
If it3 and 4,4 are held fixed and Al" and 4,2 regarded as variable parameters

these equations say that the point (X1, X2, X3, X4) describes the plane
through the vertex and the points ( -At4, i/, 3) and (V/3, ij,3,-4, i4).
If 4/3 and 4,4 are multiplied through by the same factor, this plane is un-
altered. If, however, the ratio t3/4/4 iS changed the plane is changed and
there is one such plane for each value of this ratio. Moreover it is easy
to infer from the equations (2.4) that no two of the planes so obtained
have any part in common except (0, 0, 0, 0).

In like manner we see that there is another system of planes on the cone,
one for each value Of /1/At. Two planes, one from the first system de-
termined by (4/3, 4/4), and one from the second determined by (/Al, i/2) have
a line in common. This line is given by (2.4) with the understanding that
the coordinates 4,1, ,2 and 4/3, 414 may be multiplied through by an arbi-
trary factor. Thus (2.4) is a parameter representation of the points on
the light-cone.
From the geometry of the quadric we know that any linear transforma-

tion of the quadric into itself brings about a projective transformation of
the generating lines. With this suggestion we subject 4,1 and *2 to a linear
transformation,

4 = Tf/B. (A, B = 1, 2). (2.5)
Substituting this in (2.4) we see that the X's undergo a linear transforma-
tion whose coefficients can easily be calculated. The determinant in
(2.2) is evidently multiplied by the square of the determinant

T = ITA-
when the transformation (2.5) is carried out. Hence the transformations
(2.5) induce transformations of the light-cone into itself. Similarly for
linear transformations of P/ and 14.
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Instead of regarding (2.5) as a geometric transformation which permutes
one system of generating planes of the light cone among themselves, we
may regard it as a transformation of the parameters 461, 4,2 into new pa-
rameters, i.e., as a change of the reference system for the light-planes. Be-
cause of the physical applications we will refer to 461, #,2 (and also V/3, X44) as
spin coordinates. Thus (2.5) can be regarded as a transformation of spin
coordinates which brings about a change of the spin-frame of reference.
We shall use the conventions of tensor algebra to indicate the well-

known transformation laws that depend on (2.5), for example, the co-
variant transformation

A= tAB (A, B = 1, 2) (2.7)
where

tBTC = A (2.8)

Let us define eAB as having the components

Eli = e =O2 12 = -1 = 1.

Then, evidently, the components eAB are the same in all spin-frames if we
assume the law of transformation of a relative covariant tensor of weight
-1

1 A B
(CD = t (ABCItD.

The weight is the exponent of the determinant,

t = ItBI. (2.9)

In like manner we may define

ell = e22 = 0, 612 = _e2 = 1

and find
eCD = ABTCTD

the transformation law of a relative contravariant tensor of weight + 1.
We shall use the two e's to raise and lower indices as follows

EBAA = {A (2.10)

or #1= -,2, 4,2 = 4,1

eABOB = # (2.11)

Notice that in lowering indices we sum with respect to the first index of
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IAB while in raising indices we sum with respect to the second index of
eAB This corresponds to the identities

EABE == eABe = B. (2.12)

It must be remembered that raising indices increases the weight by
+ 1 and lowering them decreases it by -1. Thus if we assume t,A to be
of weight + 1/2 then 4,A must be of weight -1/2.
We actually do assume that the /A which enter the formulas (2.4) for

the parameterization of the light-cone are of weight +'/2 because this
means that a change of spin-frame causes the transformation

-A = tl/2TTAB (2.13)

which is of determinant 1 and therefore does not change the value of the
left-hand member of (2.2).

3. The equations (2.1) can be written in abbreviated form as

XAP = gAPXa (3.1)

in which A takes on the values 1 and 2, P the values 3 and 4 and a the
values 1, 2, 3, 4. Throughout this paper we shall use the early capital
letters, previous to P, as indices to denote the values 1 and 2, and the
later capital letters, from P onward, as indices to denote 3 and 4.
The coefficients of (3.1) for the four values of a constitute four 2-row

Hermitian matrices

. 1/0.1 .. 1 0 i\ . 1/1 0\ .. 11O
-= 2 t1 0J -0=2 t-i 0} -0= /2 -1J g=A2 0 1}

(3.2)

The equations (2.4) which are inverse to (3.1) may be written,

xa = gApXAP (3.3)
where

gl+_ ( o g2=2 (° 0 3
4

0-) @=A2( )

Since (3.1) and (3.3) are inverse, we have
AP b 6b (3b4)

and
g a gBQ = bAbP (3.5)

Let us now apply the conventions agreed upon in the last section to
raising and lowering the indices. Thus

P BPgAa. =EBAg a
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This gives four matrices

1 -1 OX 1/ 0 1 0 1\
g:i =~(/t g:20 i (0 i9):11= 9

2 1 0) (3.6)

If we calculate the other possible arrangements of indices we find that the
operation of raising and lowering indices as defined in the sections above
is consistent with the relations (3.4) and (3.5).
From the equation,

gbgAap = g bba bP
it is evident that the g's which appear in this section are all components
of the metric tensor, some in the scalar and some in the spin-frames of
reference. For example, we have

gAPBQ = (ABEPQ* (3.7)
Also we have

aAab IAa Pb + Pa gAb38B g =9gP gB + gB P

as may readily be verified.
The components of the metric tensor in the scalar and the spin coordi-

nates are all constants, but this is not true of components, partly in the
dx coordinates and partly in the spin coordinates. For example the com-
ponents in the left-hand member of the equation

gAi = gAagi
g gpga

are not, in general, constants. Nevertheless we have
aAgj = gAi gP + gAJ gPi

or, in a matrix notation,
1 gii = gig' + gii.

4. The condition that the coordinates X1 shall be real gives by (2.1)
that

X13 4nd X24 are real
and

X14 = X23*

where we are using the * to indicate conjugate imaginaries.
From (2.3) it follows that

={3* k{/A (4.1)
#&4* =

2
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where k is real. The effect of changing the value of k is merely to shift
the point X along the same line of the light-cone. Hence no generality
is lost by assuming k = 1 as we now shall do.
Hence the points X on the light-cone are given by

=I12* + #2l1l*

Xi2
- --

V-+1*_ {2*2* (4.2)

V2

-4-P1,,* + 4242*X= _0
From the form of (2.4) it is clear that if *t and #2 are multiplied by a

number c and 03 and 44 by l/c the point X represented by (2.4) is un-
changed. But if the relation (4.1) is to be undisturbed, we must have

cc*= 1.

Hence the pointX which is represented by (4.2) is unchanged if we multiply
#1 and #2 through by exp(iO) where 0 is real. On the other hand a different
point on the same generating line of the cone is represented by these
equations if we multiply 461 and #2 by a constant whose absolute value is
not 1. Each value of the ratio #1/#2 determines a line of the cone.
The parameters #6 like the coordinates X, are unaltered by changes of

coordinates in the underlying space-time. But in a given coordinate
system x they have a degree of indetermination which is expressed by
writing

I= e""fl 43
#2 = (4.3)

where x° is an arbitrary real parameter.
If fl and f2 are taken to be complex functions of the real variables xl,

X4 these equations determine a unique real point on the light-cone at
each point x. This point is the same for all values of x°. If we make a
transformation

A° = xO + log p(X1, X2, X3, X4) (4.4)

where log p is real then fl and f2 are multiplied by l/p but the same point
on the same light-cone is represented by (4.3). Hence a pair of projective
scalars6 yC1 and #2 determine a unique point of the light-cone at each point
of space-time.
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We may, indeed, make the more general transformation

xo = XO + fXlxi,d, (4.5)
instead of (4.4) which changes (4.3) into

= fA exp. (ixO- ifX1dx') (4.6)
and introduces a parametrization of the light-cone which depends on the
path of integration, without changing the point on the light-cone repre-
sented by (4.2).

5. Let us now require of our transformations of spin-frame that the
reality condition of §4 shall be undisturbed. This means that TQ must
be related to TB by the equation

+2 = TB* (5.1)
Hence the determinant of the transformation of 4A and 4 is T*.
As indicated at the end of §2 we subject the spin parameters to the laws

of transformation
=A tl/3TAPB (5.2)

,P= t*112TP0 (5.3)

and, consistently with this,
XAP = (t t*)l/2XBQTA TQ, (5.)

which leaves the quadratic form

X13 X14
IX23 X24

unaltered. Hence

-= (t t*) /2g PagBbQTAT (5.5)

is a Lorentz transformation.
6. We now have before us a new class of geometrical objects with the

following characteristics. Consider two functions,
- eiXf1(x1, X2, X3, X4)

#2 - eifpxfl1(x, x2, x3, X4). (6.1)

If there is fixed a coordinate system, a gauge and a spin-frame, then the
equations (6.1) together with (4.2) determine a definite point on each
light-cone. Under a transformation of coordinates or of gauge ,1 and
#2 behave lke projective scalars of index i, that is, the transformation is
effected by substituting

x= -:¢°log p (6.2)
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in (6.1). We may also allow the non-holonomic gauge transformation
(4.5). A change of the spin-frame requires that Y61 and 0/62 be replaced by
Y61 and 4? according to (5.2). The geometrical object having components
#1 and i/2 subject to all these conditions, we will call a contravariant
spinor of the first order of weight 1/2. Spinors of other orders and weights
are defined by replacing (5.2) by the suitable linear relations after the
fashion of tensor algebra.

7. In order to have a theory of covariant differentiation of spinors we
have only to introduce the analogue of an affine connection. This is a
geometric object whose 20 components

ABa (A, B = 1, 2; a=0, 1, 2,3,4)

are functions of x1, x2x3,x4, alone and under changes of spin-frame obey
the transformation law

a = A + C (7.1)

whereas under transformation of coordinates and gauge they behave like
components of a projective covariant vector. We shall call this a spinor
connection of the first kind.

It then follows by the same calculation as in tensor analysis7 that if
tA is a spinor of weight N

,A

ax+ ABa - N A AA = (7.2)

are the components of a geometric object which transform like those of a
spinor of weight N with respect to the index A and like those of a projective
tensor with respect to a. That is to say if we change coordinates, gauge
and spin-frame all at once we have

-,a tl/23TB -* (7.3)

We call y6a the covariant derivative of 1A
Covariant differentiation of spinors of arbitrary order and weight is

defined analogously by the same formulas as in tensor analysis.7 For
example, if xAP is a spinor with the law of transformation (5.4)

XAxA=P

,a axa+ ABaX + AQaX Q - ~ AgaAP - AQXP (7.4)Our reality c itis m ake i 2 22t

Our reality conditions make it necessary, of course, that

= (.7.5)AB+2a -,= ABa-
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Hence
Apa = AAa. (7.6)

If AA are components of a spinor connection of the first kind the functions

rB. = ABa - aB (7.7)

are the components of a geometric object which we shall call a spinor
connection of the second kind. Its law of transformation under changes of
spin-frame is

fBt (rD.tB + ax) TC 12 Ox B (7.8)

and it satisfies the invariant condition

r = 0. (7.9)
In case N = '/2, that is in case OA is a spinor of weight 1/2 and index i,

(7.2) may be written
__

AaOB =#A
a + rB a (7.10)

8. The formula (7.10) for covariant differentiation of a spinor can be
used to obtain a displacement formula as follows The equations

- &Oa = 0 (8.1)

where ( is an arbitrary projective vector such that

(=P , (8.2)

are invariant under transformations of coordinates, gauge and spin-frame.
Also they are satisfied identically for a = 0. Hence the equations

(4pA, i - /,o)dx'
0 - = 0 (8.3)

are invariant under all three types of transformation.
It is sufficient for our present purposes if we limit attention to the case

in which8
A = 0. (8.4)

Under these conditions the components r A are unaltered by gauge trans-
formations and respond to transformations of co6rdinates like the com-
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ponents of a covariant affine vector. Substituting (7.10) in (8.3) we now
obtain

d.&A + B( = ijr dd-A (8.5)

This is the formula for the displacement of the O's which enter in the
parameterization (4.3) of the light-cone along a curve

* ~~~~~~xi= xi(t).

Applying this and the corresponding formula for the conjugate imaginary
,6s to

XAP = AAP

we find the following displacement formula,

dXAP
d + r'AXBP - + rPXAQ dt (8.6)dt Bj dt Qj t

which in the scalar coordinates of §1 becomes

dXa x
d + rba dt = 0, (8.7)

where
ra = gAp rpgA P + geApPjgbQ. (8.8)

These functions satisfy the condition,

raJ = 0 (8.9)
in consequence of (7.9).

9. The equation (8.7) is the formula for an affine displacement and we
can in fact identify this displacement with the displacement by infinitesi-
mal parallelism determined by the gravitational tensor g,j. The latter
is given by

dX' ~~dXk
+ rLk -jdi dt = (9.1)

in the coordinates x, where X' = g$aXa and rjk are the Christoffel symbols
of the second kind formed from gij. Under the transformation (1.2) we find

ra= (rkg -a (9.2)

and also, as is well known, that these functions satisfy the condition (8.9).
The equation (8.8) now yields

AP abjQ = As + P Ag 'JgBQ ~BiQ + Fj6B (.3
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Setting A = B and P = Q and summing we obtain

rA = -rp = X,. (9.4)
We obtain

A~~~~~~~~~~~~~~r - 45}j= i/2pba,gAPgBP (9A5)

by setting P = Q in (9.3) and summing. This equation determines rBP
uniquely if in accordance with (7.9) we assume Xj = 0. Similarly we
obtain

rQ 1-/2rbjgaA gAQ. (9.6)
Thus a displacement (9.1) determines a pair of conjugate spin displace-

ments
VAC = o, VAQR =°

where
PB PigA(j13 B

VAC=gA + ci - i(PiCj
and

AQ = gAj Q X+rQ*+ioQ)PRR-J + IV +

The functions Soy are completely arbitrary.
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